How do mathematicians write and evaluate conditional statements?

If
$$\frac{x=5}{H}$$
, then $\frac{x^2=25}{C}$. Given $\frac{\text{Conclusion}}{\text{Implied}}$.

$$\underline{x^2 = 25}$$
 when $\underline{x = 5}$.

$$x=5$$
 implies $x^2=25$.

$$\Rightarrow x = 5 \longrightarrow x^2 = 25$$

Converses

The converse of a conditional statement exchanges the hypothesis and the conclusion.

Example 1: Original Statement (O5)

If
$$x=5$$
, then $x^2=25$.

Is this statement true?

$$\gamma = 5$$
 $(5)^2 = 25$
 $7 = 25$
 $7 = 25$

Converse Statement (CS)

If
$$\underline{x^2 = 25}$$
, then $\underline{x = 5}$.

Is this statement true?

 \Rightarrow

Counterexample: The hypothesis is true, but the conclusion is false!

Ex 2: OS - If M is the midpoint of
$$\overline{AB}$$
, then $\overline{AM} = \overline{MB}$.

Is this statement true?

What is the converse of this statement?

Is this statement true?

AM=MB but mis not The midplot AB.

Ex 3: OS - If
$$2x-1=5$$
, then $x=3$.

Is this statement true?

What is the converse of this statement?

Is this statement true?

If a conditional statement and its converse are both true, you can write a biconditional statement.

$$2x-1=5$$
 if and only if $X=3$.